Optimal Ball Recycling

07/04/2018
by   Michael A. Bender, et al.
0

Balls-and-bins games have been a wildly successful tool for modeling load balancing problems. In this paper, we study a new scenario, which we call the ball recycling game, defined as follows: Throw m balls into n bins i.i.d. according to a given probability distribution p. Then, at each time step, pick a non-empty bin and recycle its balls: take the balls from the selected bin and re-throw them according to p. This balls-and-bins game closely models memory-access heuristics in databases. The goal is to have a bin-picking method that maximizes the recycling rate, defined to be the expected number of balls recycled per step in the stationary distribution. We study two natural strategies for ball recycling: Fullest Bin, which greedily picks the bin with the maximum number of balls, and Random Ball, which picks a ball at random and recycles its bin. We show that for general p, Random Ball is O(1)-optimal, whereas Fullest Bin can be pessimal. However, when p = u, the uniform distribution, Fullest Bin is optimal to within an additive constant.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset