Opinion-aware Answer Generation for Review-driven Question Answering in E-Commerce
Product-related question answering (QA) is an important but challenging task in E-Commerce. It leads to a great demand on automatic review-driven QA, which aims at providing instant responses towards user-posted questions based on diverse product reviews. Nevertheless, the rich information about personal opinions in product reviews, which is essential to answer those product-specific questions, is underutilized in current generation-based review-driven QA studies. There are two main challenges when exploiting the opinion information from the reviews to facilitate the opinion-aware answer generation: (i) jointly modeling opinionated and interrelated information between the question and reviews to capture important information for answer generation, (ii) aggregating diverse opinion information to uncover the common opinion towards the given question. In this paper, we tackle opinion-aware answer generation by jointly learning answer generation and opinion mining tasks with a unified model. Two kinds of opinion fusion strategies, namely, static and dynamic fusion, are proposed to distill and aggregate important opinion information learned from the opinion mining task into the answer generation process. Then a multi-view pointer-generator network is employed to generate opinion-aware answers for a given product-related question. Experimental results show that our method achieves superior performance in real-world E-Commerce QA datasets, and effectively generate opinionated and informative answers.
READ FULL TEXT