Open-World Stereo Video Matching with Deep RNN

08/12/2018
by   Yiran Zhong, et al.
0

Deep Learning based stereo matching methods have shown great successes and achieved top scores across different benchmarks. However, like most data-driven methods, existing deep stereo matching networks suffer from some well-known drawbacks such as requiring large amount of labeled training data, and that their performances are fundamentally limited by the generalization ability. In this paper, we propose a novel Recurrent Neural Network (RNN) that takes a continuous (possibly previously unseen) stereo video as input, and directly predicts a depth-map at each frame without a pre-training process, and without the need of ground-truth depth-maps as supervision. Thanks to the recurrent nature (provided by two convolutional-LSTM blocks), our network is able to memorize and learn from its past experiences, and modify its inner parameters (network weights) to adapt to previously unseen or unfamiliar environments. This suggests a remarkable generalization ability of the net, making it applicable in an open world setting. Our method works robustly with changes in scene content, image statistics, and lighting and season conditions etc. By extensive experiments, we demonstrate that the proposed method seamlessly adapts between different scenarios. Equally important, in terms of the stereo matching accuracy, it outperforms state-of-the-art deep stereo approaches on standard benchmark datasets such as KITTI and Middlebury stereo.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset