Open-Set Recognition with Gaussian Mixture Variational Autoencoders

06/03/2020 ∙ by Alexander Cao, et al. ∙ 5

In inference, open-set classification is to either classify a sample into a known class from training or reject it as an unknown class. Existing deep open-set classifiers train explicit closed-set classifiers, in some cases disjointly utilizing reconstruction, which we find dilutes the latent representation's ability to distinguish unknown classes. In contrast, we train our model to cooperatively learn reconstruction and perform class-based clustering in the latent space. With this, our Gaussian mixture variational autoencoder (GMVAE) achieves more accurate and robust open-set classification results, with an average F1 improvement of 29.5 aided by analytical results.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.