Open Problems and Modern Solutions for Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) has achieved great success in solving complicated decision-making problems. Despite the successes, DRL is frequently criticized for many reasons, e.g., data inefficient, inflexible and intractable reward design. In this paper, we review two publications that investigate the mentioned issues of DRL and propose effective solutions. One designs the reward for human-robot collaboration by combining the manually designed extrinsic reward with a parameterized intrinsic reward function via the deterministic policy gradient, which improves the task performance and guarantees a stronger obstacle avoidance. The other one applies selective attention and particle filters to rapidly and flexibly attend to and select crucial pre-learned features for DRL using approximate inference instead of backpropagation, thereby improving the efficiency and flexibility of DRL. Potential avenues for future work in both domains are discussed in this paper.
READ FULL TEXT