Online Multi-Task Learning with Recursive Least Squares and Recursive Kernel Methods

08/03/2023
by   Gabriel R. Lencione, et al.
0

This paper introduces two novel approaches for Online Multi-Task Learning (MTL) Regression Problems. We employ a high performance graph-based MTL formulation and develop its recursive versions based on the Weighted Recursive Least Squares (WRLS) and the Online Sparse Least Squares Support Vector Regression (OSLSSVR). Adopting task-stacking transformations, we demonstrate the existence of a single matrix incorporating the relationship of multiple tasks and providing structural information to be embodied by the MT-WRLS method in its initialization procedure and by the MT-OSLSSVR in its multi-task kernel function. Contrasting the existing literature, which is mostly based on Online Gradient Descent (OGD) or cubic inexact approaches, we achieve exact and approximate recursions with quadratic per-instance cost on the dimension of the input space (MT-WRLS) or on the size of the dictionary of instances (MT-OSLSSVR). We compare our online MTL methods to other contenders in a real-world wind speed forecasting case study, evidencing the significant gain in performance of both proposed approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset