DeepAI AI Chat
Log In Sign Up

Online Multi-Object Tracking with delta-GLMB Filter based on Occlusion and Identity Switch Handling

11/19/2020
by   Mohammadjavad Abbaspour, et al.
0

In this paper, we propose an online multi-object tracking (MOT) method in a delta Generalized Labeled Multi-Bernoulli (delta-GLMB) filter framework to address occlusion and miss-detection issues, reduce false alarms, and recover identity switch (ID switch). To handle occlusion and miss-detection issues, we propose a measurement-to-disappeared track association method based on one-step delta-GLMB filter, so it is possible to manage these difficulties by jointly processing occluded or miss-detected objects. This part of proposed method is based on a proposed similarity metric which is responsible for defining the weight of hypothesized reappeared tracks. We also extend the delta-GLMB filter to efficiently recover switched IDs using the cardinality density, size and color features of the hypothesized tracks. We also propose a novel birth model to achieve more effective clutter removal performance. In both occlusion/miss-detection handler and newly-birthed object detector sections of the proposed method, unassigned measurements play a significant role, since they are used as the candidates for reappeared or birth objects. In addition, we perform an ablation study which confirms the effectiveness of our contributions in comparison with the baseline method. We evaluate the proposed method on well-known and publicly available MOT15 and MOT17 test datasets which are focused on pedestrian tracking. Experimental results show that the proposed tracker performs better or at least at the same level of the state-of-the-art online and offline MOT methods. It effectively handles the occlusion and ID switch issues and reduces false alarms as well.

READ FULL TEXT

page 4

page 5

page 7

page 8

page 12

page 14

page 19

page 20

07/31/2019

Online Multi-Object Tracking Framework with the GMPHD Filter and Occlusion Group Management

In this paper, we propose an efficient online multi-object tracking fram...
01/04/2022

Online Multi-Object Tracking with Unsupervised Re-Identification Learning and Occlusion Estimation

Occlusion between different objects is a typical challenge in Multi-Obje...
03/06/2021

Simple online and real-time tracking with occlusion handling

Multiple object tracking is a challenging problem in computer vision due...
11/18/2016

Online Visual Multi-Object Tracking via Labeled Random Finite Set Filtering

This paper proposes an online visual multi-object tracking algorithm usi...
08/31/2020

Online Multi-Object Tracking and Segmentation with GMPHD Filter and Simple Affinity Fusion

In this paper, we propose a highly practical fully online multi-object t...
05/30/2017

Addressing Ambiguity in Multi-target Tracking by Hierarchical Strategy

This paper presents a novel hierarchical approach for the simultaneous t...
06/06/2019

Detection and Tracking of Multiple Mice Using Part Proposal Networks

The study of mouse social behaviours has been increasingly undertaken in...