Online Max-min Fair Allocation

11/14/2021
by   Yasushi Kawase, et al.
0

We study an online version of the max-min fair allocation problem for indivisible items. In this problem, items arrive one by one, and each item must be allocated irrevocably on arrival to one of n agents, who have additive valuations for the items. Our goal is to make the least happy agent as happy as possible. In research on the topic of online allocation, this is a fundamental and natural problem. Our main result is to reveal the asymptotic competitive ratios of the problem for both the adversarial and i.i.d. input models. We design a polynomial-time deterministic algorithm that is asymptotically 1/n-competitive for the adversarial model, and we show that this guarantee is optimal. To this end, we present a randomized algorithm with the same competitive ratio first and then derandomize it. A natural derandomization fails to achieve the competitive ratio of 1/n. We instead build the algorithm by introducing a novel technique. When the items are drawn from an unknown identical and independent distribution, we construct a simple polynomial-time deterministic algorithm that outputs a nearly optimal allocation. We analyze the strict competitive ratio and show almost tight bounds for the solution. We further mention some implications of our results on variants of the problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset