Online Mapping and Motion Planning under Uncertainty for Safe Navigation in Unknown Environments

04/26/2020
by   Èric Pairet, et al.
0

Safe autonomous navigation is an essential and challenging problem for robots operating in highly unstructured or completely unknown environments. Under these conditions, not only robotic systems must deal with limited localisation information, but also their manoeuvrability is constrained by their dynamics and often suffer from uncertainty. In order to cope with these constraints, this manuscript proposes an uncertainty-based framework for mapping and planning feasible motions online with probabilistic safety-guarantees. The proposed approach deals with the motion, probabilistic safety, and online computation constraints by: (i) incrementally mapping the surroundings to build an uncertainty-aware representation of the environment, and (ii) iteratively (re)planning trajectories to goal that are kinodynamically feasible and probabilistically safe through a multi-layered sampling-based planner in the belief space. In-depth empirical analyses illustrate some important properties of this approach, namely, (a) the multi-layered planning strategy enables rapid exploration of the high-dimensional belief space while preserving asymptotic optimality and completeness guarantees, and (b) the proposed routine for probabilistic collision checking results in tighter probability bounds in comparison to other uncertainty-aware planners in the literature. Furthermore, real-world in-water experimental evaluation on a non-holonomic torpedo-shaped autonomous underwater vehicle and simulated trials in the Stairwell scenario of the DARPA Subterranean Challenge 2019 on a quadrotor unmanned aerial vehicle demonstrate the efficacy of the method as well as its suitability for systems with limited on-board computational power.

READ FULL TEXT

page 1

page 11

page 12

page 13

page 14

page 15

page 18

page 19

research
02/24/2022

Gaussian Belief Trees for Chance Constrained Asymptotically Optimal Motion Planning

In this paper, we address the problem of sampling-based motion planning ...
research
03/20/2023

Chance-Constrained Multi-Robot Motion Planning under Gaussian Uncertainties

We consider a chance-constrained multi-robot motion planning problem in ...
research
06/20/2019

Autonomous Navigation of MAVs in Unknown Cluttered Environments

This paper presents an autonomous navigation framework for reaching a go...
research
11/04/2021

Stein Variational Probabilistic Roadmaps

Efficient and reliable generation of global path plans are necessary for...
research
03/04/2021

STEP: Stochastic Traversability Evaluation and Planning for Safe Off-road Navigation

Although ground robotic autonomy has gained widespread usage in structur...
research
06/17/2022

An imminent collision monitoring system with safe stopping interventions for autonomous aerial flights

Collision avoidance requires tradeoffs in planning time horizons. Depend...
research
11/09/2018

Robust, Compliant Assembly via Optimal Belief Space Planning

In automated manufacturing, robots must reliably assemble parts of vario...

Please sign up or login with your details

Forgot password? Click here to reset