Online Event Recognition from Moving Vessel Trajectories

01/22/2016 ∙ by Kostas Patroumpas, et al. ∙ National Technical University of Athens University of Piraeus 0

We present a system for online monitoring of maritime activity over streaming positions from numerous vessels sailing at sea. It employs an online tracking module for detecting important changes in the evolving trajectory of each vessel across time, and thus can incrementally retain concise, yet reliable summaries of its recent movement. In addition, thanks to its complex event recognition module, this system can also offer instant notification to marine authorities regarding emergency situations, such as risk of collisions, suspicious moves in protected zones, or package picking at open sea. Not only did our extensive tests validate the performance, efficiency, and robustness of the system against scalable volumes of real-world and synthetically enlarged datasets, but its deployment against online feeds from vessels has also confirmed its capabilities for effective, real-time maritime surveillance.



There are no comments yet.


page 11

page 29

page 32

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.


  • (1)

    Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over event streams.

    In: SIGMOD (2008)
  • (2) Alevizos, E., Artikis, A., Patroumpas, K., Vodas, M., Theodoridis, Y., Pelekis, N.: How not to drown in a sea of information: An event recognition approach. In: IEEE International Conference on Big Data (2015)
  • (3) Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. The VLDB Journal 15(2), 121–142 (2006)
  • (4) Artikis, A., Sergot, M.J., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2015)
  • (5) Bai, Y., Thakkar, H., Wang, H., Luo, C., Zaniolo, C.: A data stream language and system designed for power and extensibility. In: CIKM, pp. 337–346 (2006)
  • (6) Brenna, L., Demers, A.J., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald, M., Thatte, M., White, W.M.: Cayuga: a high-performance event processing engine. In: SIGMOD, pp. 1100–1102 (2007)
  • (7) Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deterministic error bounds. VLDB Journal 15(3), 211–228 (2006)
  • (8) Clark, K.: Negation as failure. In: H. Gallaire, J. Minker (eds.) Logic and Databases, pp. 293–322. Plenum Press (1978)
  • (9) Cugola, G., Margara, A.: TESLA: a formally defined event specification language. In: DEBS, pp. 50–61 (2010)
  • (10) Dindar, N., Fischer, P.M., Soner, M., Tatbul, N.: Efficiently correlating complex events over live and archived data streams. In: DEBS, pp. 243–254 (2011)
  • (11) Dousson, C., Maigat, P.L.: Chronicle recognition improvement using temporal focusing and hierarchisation. In: IJCAI, pp. 324–329 (2007)
  • (12)

    Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization.

    J. Mach. Learn. Res. 12, 2121–2159 (2011)
  • (13) Eckert, M., Bry, F.: Rule-based composite event queries: the language xchange and its semantics. Knowledge Information Systems 25(3), 551–573 (2010)
  • (14) Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)
  • (15) Garcia, J., Gomez-Romero, J., Patricio, M., Molina, J., Rogova, G.: On the representation and exploitation of context knowledge in a harbor surveillance scenario. In: FUSION, pp. 1–8 (2011)
  • (16) Golab, L., Johnson, T.: Data stream warehousing (tutorial). In: ACM SIGMOD, pp. 949–952 (2013)
  • (17) Idiri, B., Napoli, A.: The automatic identification system of maritime accident risk using rule-based reasoning. In: SoSE, pp. 125–130 (2012)
  • (18) Katsilieris, F., Braca, P., Coraluppi, S.: Detection of malicious AIS position spoofing by exploiting radar information. In: FUSION, pp. 1196–1203 (2013)
  • (19)

    Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions with inductive logic programming.

    Machine Learning 100(2–3), 555–585 (2015)
  • (20) Kazemitabar, S.J., Demiryurek, U., Ali, M.H., Akdogan, A., Shahabi, C.: Geospatial stream query processing using Microsoft SQL Server Streaminsight. PVLDB 3(2), 1537–1540 (2010)
  • (21) Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4(1) (1986)
  • (22) Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window queries over data streams. ACM Transactions on Database Systems 34(1) (2009)
  • (23) van Laere, J., Nilsson, M.: Evaluation of a workshop to capture knowledge from subject matter experts in maritime surveillance. In: FUSION, pp. 171–178 (2009)
  • (24) Lange, R., Dürr, F., Rothermel, K.: Efficient real-time trajectory tracking. VLDB Journal 20(5), 671–694 (2011)
  • (25) Li, G., Jacobsen, H.A.: Composite subscriptions in content-based publish/subscribe systems. In: Middleware (2005)
  • (26) Meratnia, N., de By, R.: Spatiotemporal compression techniques for moving point objects. In: EDBT, pp. 765–782 (2004)
  • (27) Millefiori, L.M., Braca, P., Bryan, K., Willett, P.: Adaptive filtering of imprecisely time-stamped measurements with application to AIS networks. In: FUSION, pp. 359–365 (2015)
  • (28) Moga, A., Tatbul, N.: UpStream: A storage-centric load management system for real-time update streams. PVLDB 4(12), 1442–1445 (2011)
  • (29) O’Rourke, J.: Computational Geometry in C. Cambridge University Press (1998)
  • (30)

    Pallotta, G., Vespe, M., Bryan, K.: Vessel pattern knowledge discovery from AIS data: A framework for anomaly detection and route prediction.

    Entropy 15(6), 2218–2245 (2013)
  • (31) Paschke, A.: ECA-RuleML: An approach combining ECA rules with temporal interval-based KR event/action logics and transactional update logics. Tech. Rep. 11, TU München (2005)
  • (32) Paschke, A., Kozlenkov, A.: Rule-based event processing and reaction rules. In: RuleML, LNCS 5858 (2009)
  • (33) Patroumpas, K., Artikis, A., Katzouris, N., Vodas, M., Theodoridis, Y., Pelekis, N.: Event recognition for maritime surveillance. In: EDBT, pp. 629–640 (2015)
  • (34) Patroumpas, K., Sellis, T.: Maintaining consistent results of continuous queries under diverse window specifications. Information Systems 36(1), 42–61 (2011)
  • (35) Potamias, M., Patroumpas, K., Sellis, T.: Online amnesic summarization of streaming locations. In: SSTD, pp. 148–165 (2007)
  • (36) Przymusinski, T.: On the declarative semantics of stratified deductive databases and logic programs. In: Found. of Deductive Databases and Logic Programming. Morgan (1987)
  • (37) Shahir, H.Y., Glasser, U., Shahir, A.Y., Wehn, H.: Maritime situation analysis framework: Vessel interaction classification and anomaly detection. In: Big Data, pp. 1279–1289 (2015)
  • (38) Skarlatidis, A., Paliouras, G., Artikis, A., Vouros, G.: Probabilistic event calculus for event recognition. ACM Transactions on Computational Logic 16(2) (2015)
  • (39) Snidaro, L., Visentini, I., Bryan, K.: Fusing uncertain knowledge and evidence for maritime situational awareness via markov logic networks. Information Fusion 21, 159–172 (2015)
  • (40) Terroso-Saenz, F., Valdes-Vela, M., Skarmeta-Gomez, A.F.: A complex event processing approach to detect abnormal behaviours in the marine environment. Information Systems Frontiers pp. 1–16 (2015)
  • (41) Wolfson, O., Sistla, A., Chamberlain, S., Yesha, Y.: Updating and querying databases that track mobile units. Distributed & Parallel Databases 7(3), 257–287 (1999)
  • (42) Zhang, H., Diao, Y., Immerman, N.: On complexity and optimization of expensive queries in complex event processing. In: SIGMOD, pp. 217–228 (2014)