DeepAI AI Chat
Log In Sign Up

One-Dimensional Fragment over Words and Trees

10/06/2021
by   Emanuel Kieronski, et al.
0

One-dimensional fragment of first-order logic is obtained by restricting quantification to blocks of existential (universal) quantifiers that leave at most one variable free. We investigate this fragment over words and trees, presenting a complete classification of the complexity of its satisfiability problem for various navigational signatures, and comparing its expressive power with other important formalisms. These include the two-variable fragment with counting and the unary negation fragment.

READ FULL TEXT

page 1

page 2

page 3

page 4

04/09/2019

One-dimensional guarded fragments

We call a first-order formula one-dimensional if its every maximal block...
10/25/2018

The One-Variable Logic Meets Presburger Arithmetic

We consider the one-variable fragment of first-order logic extended with...
10/16/2017

Modulo Counting on Words and Trees

We consider the satisfiability problem for the two-variable fragment of ...
09/01/2023

Satisfiability Checking of Multi-Variable TPTL with Unilateral Intervals Is PSPACE-Complete

We investigate the decidability of the 0,∞ fragment of Timed Proposition...
12/15/2018

Decidable fragments of first-order modal logics with counting quantifiers over varying domains

This paper explores the computational complexity of various natural one-...
06/01/2020

Two variable logic with ultimately periodic counting

We consider the extension of two variable logic with quantifiers that st...