On Wasserstein Two Sample Testing and Related Families of Nonparametric Tests

09/08/2015
by   Aaditya Ramdas, et al.
0

Nonparametric two sample or homogeneity testing is a decision theoretic problem that involves identifying differences between two random variables without making parametric assumptions about their underlying distributions. The literature is old and rich, with a wide variety of statistics having being intelligently designed and analyzed, both for the unidimensional and the multivariate setting. Our contribution is to tie together many of these tests, drawing connections between seemingly very different statistics. In this work, our central object is the Wasserstein distance, as we form a chain of connections from univariate methods like the Kolmogorov-Smirnov test, PP/QQ plots and ROC/ODC curves, to multivariate tests involving energy statistics and kernel based maximum mean discrepancy. Some connections proceed through the construction of a smoothed Wasserstein distance, and others through the pursuit of a "distribution-free" Wasserstein test. Some observations in this chain are implicit in the literature, while others seem to have not been noticed thus far. Given nonparametric two sample testing's classical and continued importance, we aim to provide useful connections for theorists and practitioners familiar with one subset of methods but not others.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro