On W[1]-Hardness as Evidence for Intractability

12/15/2017
by   Ralph C. Bottesch, et al.
0

The central conjecture of parameterized complexity states that FPT is not equal to W[1], and is generally regarded as the parameterized counterpart to P != NP. We revisit the issue of the plausibility of FPT != W[1], focusing on two aspects: the difficulty of proving the conjecture (assuming it holds), and how the relation between the two classes might differ from the one between P and NP. Regarding the first aspect, we give new evidence that separating FPT from W[1] would be considerably harder than doing the same for P and NP. Our main result regarding the relation between FPT and W[1] states that the closure of W[1] under relativization with FPT-oracles is precisely the class W[P], implying that either FPT is not low for W[1], or the W-Hierarchy collapses. This theorem has consequences for the A-Hierarchy as well, namely that unless W[P] is a subset of some class A[t], there are structural differences between the A-Hierarchy and the Polynomial Hierarchy. We also prove that under the unlikely assumption that W[P] collapses to W[1] in a specific way, downward separation holds for the A-Hierarchy. Finally, we give weak (oracle-based) evidence that the inclusion of W[t] in A[t] is strict for t>1, and that the W-Hierarchy is proper. The latter result answers a question of Downey and Fellows (1993).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro