On Vision Features in Multimodal Machine Translation

03/17/2022
by   Bei Li, et al.
0

Previous work on multimodal machine translation (MMT) has focused on the way of incorporating vision features into translation but little attention is on the quality of vision models. In this work, we investigate the impact of vision models on MMT. Given the fact that Transformer is becoming popular in computer vision, we experiment with various strong models (such as Vision Transformer) and enhanced features (such as object-detection and image captioning). We develop a selective attention model to study the patch-level contribution of an image in MMT. On detailed probing tasks, we find that stronger vision models are helpful for learning translation from the visual modality. Our results also suggest the need of carefully examining MMT models, especially when current benchmarks are small-scale and biased. Our code could be found at <https://github.com/libeineu/fairseq_mmt>.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset