On two-player zero-sum games and conic linear programming

02/06/2023
by   Nick Dimou, et al.
0

We show that strong duality for conic linear programming directly implies the minimax theorem for a wide class of infinite two-player zero-sum games. In fact, for every two-player zero-sum game with "cone-leveled" strategy sets, or more generally with strategy sets that can be written as unions of "cone-leveled" subsets, its game value and (approximate) optimal strategies can be calculated by solving a primal-dual pair of conic linear problems. The original result proven by von Neumann is therefore naturally generalized to the infinite-dimensional case, and a strong, rigorous connection between infinite two-player zero-sum games and mathematical programming is established.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro