On the uses and abuses of regression models: a call for reform of statistical practice and teaching
When students and users of statistical methods first learn about regression analysis there is an emphasis on the technical details of models and estimation methods that invariably runs ahead of the purposes for which these models might be used. More broadly, statistics is widely understood to provide a body of techniques for "modelling data", underpinned by what we describe as the "true model myth", according to which the task of the statistician/data analyst is to build a model that closely approximates the true data generating process. By way of our own historical examples and a brief review of mainstream clinical research journals, we describe how this perspective leads to a range of problems in the application of regression methods, including misguided "adjustment" for covariates, misinterpretation of regression coefficients and the widespread fitting of regression models without a clear purpose. We then outline an alternative approach to the teaching and application of regression methods, which begins by focussing on clear definition of the substantive research question within one of three distinct types: descriptive, predictive, or causal. The simple univariable regression model may be introduced as a tool for description, while the development and application of multivariable regression models should proceed differently according to the type of question. Regression methods will no doubt remain central to statistical practice as they provide a powerful tool for representing variation in a response or outcome variable as a function of "input" variables, but their conceptualisation and usage should follow from the purpose at hand.
READ FULL TEXT