Log In Sign Up

On the Topic of Jets

by   Eric M. Metodiev, et al.

We introduce jet topics: a framework to identify underlying classes of jets from collider data. Because of a close mathematical relationship between distributions of observables in jets and emergent themes in sets of documents, we can apply recent techniques in "topic modeling" to extract jet topics from data with no input from simulation or theory. As a proof-of-concept with parton shower samples, we apply jet topics to determine separate quark and gluon distributions for constituent multiplicity. We also determine separate quark and gluon rapidity spectra from a mixed Z-plus-jet sample. Because jet topics are defined directly from hadron-level multi-differential cross sections, one can predict jet topics from first-principles theoretical calculations, with potential implications for how to define quark and gluon jets beyond leading-logarithmic accuracy. These investigations suggest that jet topics will be useful for extracting underlying jet distributions and fractions in a wide range of contexts at the Large Hadron Collider.


page 1

page 2

page 3

page 4


Dirichlet belief networks for topic structure learning

Recently, considerable research effort has been devoted to developing de...

Topic Grouper: An Agglomerative Clustering Approach to Topic Modeling

We introduce Topic Grouper as a complementary approach in the field of p...

Crime Topic Modeling

The classification of crime into discrete categories entails a massive l...

Extracting Topics from Open Educational Resources

In recent years, Open Educational Resources (OERs) were earmarked as cri...

An Online Topic Modeling Framework with Topics Automatically Labeled

In this paper, we propose a novel online topic tracking framework, named...

Research Portfolio Analysis and Topic Prominence

Stakeholders in the science system need to decide where to place their b...


  • Seymour (1991) M. H. Seymour, “Tagging a heavy Higgs boson,” in ECFA Large Hadron Collider Workshop, Aachen, Germany, 4-9 Oct 1990: Proceedings.2. (1991) pp. 557–569.
  • Seymour (1994) Michael H. Seymour, “Searches for new particles using cone and cluster jet algorithms: A Comparative study,” Z. Phys. C62, 127–138 (1994).
  • Butterworth et al. (2002) J. M. Butterworth, B. E. Cox,  and Jeffrey R. Forshaw, “ scattering at the CERN LHC,” Phys. Rev. D65, 096014 (2002)arXiv:hep-ph/0201098 [hep-ph] .
  • Butterworth et al. (2007) J. M. Butterworth, John R. Ellis,  and A. R. Raklev, “Reconstructing sparticle mass spectra using hadronic decays,” JHEP 05, 033 (2007)arXiv:hep-ph/0702150 [HEP-PH] .
  • Butterworth et al. (2008) Jonathan M. Butterworth, Adam R. Davison, Mathieu Rubin,  and Gavin P. Salam, “Jet substructure as a new Higgs search channel at the LHC,” Phys. Rev. Lett. 100, 242001 (2008)arXiv:0802.2470 [hep-ph] .
  • Abdesselam et al. (2011) A. Abdesselam et al., “Boosted objects: A Probe of beyond the Standard Model physics,” Boost 2010 Oxford, United Kingdom, June 22-25, 2010Eur. Phys. J. C71, 1661 (2011)arXiv:1012.5412 [hep-ph] .
  • Altheimer et al. (2012) A. Altheimer et al., “Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks,” BOOST 2011 Princeton , NJ, USA, 22–26 May 2011J. Phys. G39, 063001 (2012)arXiv:1201.0008 [hep-ph] .
  • Altheimer et al. (2014) A. Altheimer et al., “Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012,” BOOST 2012 Valencia, Spain, July 23-27, 2012Eur. Phys. J. C74, 2792 (2014)arXiv:1311.2708 [hep-ex] .
  • Adams et al. (2015) D. Adams et al., “Towards an Understanding of the Correlations in Jet Substructure,” Eur. Phys. J. C75, 409 (2015)arXiv:1504.00679 [hep-ph] .
  • Larkoski et al. (2017) Andrew J. Larkoski, Ian Moult,  and Benjamin Nachman, “Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning,”  (2017), arXiv:1709.04464 [hep-ph] .
  • Nilles and Streng (1981) Hans Peter Nilles and K. H. Streng, “Quark - Gluon Separation in Three Jet Events,” Phys. Rev. D23, 1944 (1981).
  • Jones (1989) Lorella M. Jones, “Tests for Determining the Parton Ancestor of a Hadron Jet,” Phys. Rev. D39, 2550 (1989).
  • Fodor (1990) Z. Fodor, “How to See the Differences Between Quark and Gluon Jets,” Phys. Rev. D41, 1726 (1990).
  • Jones (1990) Lorella Jones, “Towards a Systematic Jet Classification,” Phys. Rev. D42, 811–814 (1990).
  • Lönnblad et al. (1991)

    Leif Lönnblad, Carsten Peterson,  and Thorsteinn Rognvaldsson, “Using neural networks to identify jets,” 

    Nucl. Phys. B349, 675–702 (1991).
  • Pumplin (1991) Jon Pumplin, “How to tell quark jets from gluon jets,” Phys. Rev. D44, 2025–2032 (1991).
  • Gallicchio and Schwartz (2011a) Jason Gallicchio and Matthew D. Schwartz, “Quark and Gluon Tagging at the LHC,” Phys. Rev. Lett. 107, 172001 (2011a)arXiv:1106.3076 [hep-ph] .
  • Gallicchio and Schwartz (2013) Jason Gallicchio and Matthew D. Schwartz, “Quark and Gluon Jet Substructure,” JHEP 04, 090 (2013)arXiv:1211.7038 [hep-ph] .
  • Larkoski et al. (2013) Andrew J. Larkoski, Gavin P. Salam,  and Jesse Thaler, “Energy Correlation Functions for Jet Substructure,” JHEP 06, 108 (2013)arXiv:1305.0007 [hep-ph] .
  • Larkoski et al. (2014a) Andrew J. Larkoski, Jesse Thaler,  and Wouter J. Waalewijn, “Gaining (Mutual) Information about Quark/Gluon Discrimination,” JHEP 11, 129 (2014a)arXiv:1408.3122 [hep-ph] .
  • Bhattacherjee et al. (2015) Biplob Bhattacherjee, Satyanarayan Mukhopadhyay, Mihoko M. Nojiri, Yasuhito Sakaki,  and Bryan R. Webber, “Associated jet and subjet rates in light-quark and gluon jet discrimination,” JHEP 04, 131 (2015)arXiv:1501.04794 [hep-ph] .
  • Ferreira de Lima et al. (2017) Danilo Ferreira de Lima, Petar Petrov, Davison Soper,  and Michael Spannowsky, “Quark-Gluon tagging with Shower Deconstruction: Unearthing dark matter and Higgs couplings,” Phys. Rev. D95, 034001 (2017)arXiv:1607.06031 [hep-ph] .
  • Komiske et al. (2017)

    Patrick T. Komiske, Eric M. Metodiev,  and Matthew D. Schwartz, “Deep learning in color: towards automated quark/gluon jet discrimination,” 

    JHEP 01, 110 (2017)arXiv:1612.01551 [hep-ph] .
  • collaboration (2016) The ATLAS collaboration (ATLAS), “Discrimination of Light Quark and Gluon Jets in collisions at TeV with the ATLAS Detector,”  (2016).
  • Davighi and Harris (2018) Joe Davighi and Philip Harris, “Fractal based observables to probe jet substructure of quarks and gluons,” Eur. Phys. J. C78, 334 (2018)arXiv:1703.00914 [hep-ph] .
  • Frye et al. (2017) Christopher Frye, Andrew J. Larkoski, Jesse Thaler,  and Kevin Zhou, “Casimir Meets Poisson: Improved Quark/Gluon Discrimination with Counting Observables,” JHEP 09, 083 (2017)arXiv:1704.06266 [hep-ph] .
  • Collaboration (2013) CMS Collaboration (CMS), Performance of quark/gluon discrimination in 8 TeV pp data, Tech. Rep. CMS-PAS-JME-13-002 (2013).
  • Aad et al. (2014) Georges Aad et al. (ATLAS), “Light-quark and gluon jet discrimination in collisions at with the ATLAS detector,” Eur. Phys. J. C74, 3023 (2014)arXiv:1405.6583 [hep-ex] .
  • Aad et al. (2015a) Georges Aad et al. (ATLAS), “Jet energy measurement and its systematic uncertainty in proton-proton collisions at TeV with the ATLAS detector,” Eur. Phys. J. C75, 17 (2015a)arXiv:1406.0076 [hep-ex] .
  • Khachatryan et al. (2015a) Vardan Khachatryan et al. (CMS), “Measurement of electroweak production of two jets in association with a Z boson in proton-proton collisions at ,” Eur. Phys. J. C75, 66 (2015a)arXiv:1410.3153 [hep-ex] .
  • Aad et al. (2015b) Georges Aad et al. (ATLAS), “Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at TeV with the ATLAS detector,” JHEP 12, 055 (2015b)arXiv:1506.00962 [hep-ex] .
  • Khachatryan et al. (2015b) Vardan Khachatryan et al.

    (CMS), “Search for the standard model Higgs boson produced through vector boson fusion and decaying to

    ,” Phys. Rev. D92, 032008 (2015b)arXiv:1506.01010 [hep-ex] .
  • Aad et al. (2016) Georges Aad et al. (ATLAS), “Measurement of the charged-particle multiplicity inside jets from TeV collisions with the ATLAS detector,” Eur. Phys. J. C76, 322 (2016)arXiv:1602.00988 [hep-ex] .
  • Collaboration (2016) CMS Collaboration (CMS), Performance of quark/gluon discrimination in 13 TeV data, Tech. Rep. CMS-DP-2016-070 (2016).
  • Aaboud et al. (2017a) M. Aaboud et al. (ATLAS), “Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at TeV with the ATLAS detector,” Phys. Rev. D96, 072002 (2017a)arXiv:1703.09665 [hep-ex] .
  • Banfi et al. (2006) Andrea Banfi, Gavin P. Salam,  and Giulia Zanderighi, “Infrared safe definition of jet flavor,” Eur. Phys. J. C47, 113–124 (2006)arXiv:hep-ph/0601139 [hep-ph] .
  • Gras et al. (2017) Philippe Gras, Stefan Höche, Deepak Kar, Andrew Larkoski, Leif Lönnblad, Simon Plätzer, Andrzej Siódmok, Peter Skands, Gregory Soyez,  and Jesse Thaler, “Systematics of quark/gluon tagging,” JHEP 07, 091 (2017)arXiv:1704.03878 [hep-ph] .
  • Reichelt et al. (2017) Daniel Reichelt, Peter Richardson,  and Andrzej Siodmok, “Improving the Simulation of Quark and Gluon Jets with Herwig 7,” Eur. Phys. J. C77, 876 (2017)arXiv:1708.01491 [hep-ph] .
  • Mo et al. (2017) Jonathan Mo, Frank J. Tackmann,  and Wouter J. Waalewijn, “A case study of quark-gluon discrimination at NNLL’ in comparison to parton showers,” Eur. Phys. J. C77, 770 (2017)arXiv:1708.00867 [hep-ph] .
  • Blei (2012) David M Blei, “Probabilistic topic models,” Communications of the ACM 55, 77–84 (2012).
  • Banfi et al. (2010) Andrea Banfi, Mrinal Dasgupta, Kamel Khelifa-Kerfa,  and Simone Marzani, “Non-global logarithms and jet algorithms in high-pT jet shapes,” JHEP 08, 064 (2010)arXiv:1004.3483 [hep-ph] .
  • Becher et al. (2016) Thomas Becher, Matthias Neubert, Lorena Rothen,  and Ding Yu Shao, “Factorization and Resummation for Jet Processes,” JHEP 11, 019 (2016), [Erratum: JHEP05,154(2017)], arXiv:1605.02737 [hep-ph] .
  • Kolodrubetz et al. (2016) Daniel W. Kolodrubetz, Piotr Pietrulewicz, Iain W. Stewart, Frank J. Tackmann,  and Wouter J. Waalewijn, “Factorization for Jet Radius Logarithms in Jet Mass Spectra at the LHC,” JHEP 12, 054 (2016)arXiv:1605.08038 [hep-ph] .
  • Ellis et al. (2009) Stephen D. Ellis, Christopher K. Vermilion,  and Jonathan R. Walsh, “Techniques for improved heavy particle searches with jet substructure,” Phys. Rev. D80, 051501 (2009)arXiv:0903.5081 [hep-ph] .
  • Ellis et al. (2010a) Stephen D. Ellis, Christopher K. Vermilion,  and Jonathan R. Walsh, “Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches,” Phys. Rev. D81, 094023 (2010a)arXiv:0912.0033 [hep-ph] .
  • Krohn et al. (2010) David Krohn, Jesse Thaler,  and Lian-Tao Wang, “Jet Trimming,” JHEP 02, 084 (2010)arXiv:0912.1342 [hep-ph] .
  • Dasgupta et al. (2013) Mrinal Dasgupta, Alessandro Fregoso, Simone Marzani,  and Gavin P. Salam, “Towards an understanding of jet substructure,” JHEP 09, 029 (2013)arXiv:1307.0007 [hep-ph] .
  • Larkoski et al. (2014b) Andrew J. Larkoski, Simone Marzani, Gregory Soyez,  and Jesse Thaler, “Soft Drop,” JHEP 05, 146 (2014b)arXiv:1402.2657 [hep-ph] .
  • Frye et al. (2016a) Christopher Frye, Andrew J. Larkoski, Matthew D. Schwartz,  and Kai Yan, “Precision physics with pile-up insensitive observables,”  (2016a), arXiv:1603.06375 [hep-ph] .
  • Frye et al. (2016b) Christopher Frye, Andrew J. Larkoski, Matthew D. Schwartz,  and Kai Yan, “Factorization for groomed jet substructure beyond the next-to-leading logarithm,” JHEP 07, 064 (2016b)arXiv:1603.09338 [hep-ph] .
  • Marzani et al. (2017) Simone Marzani, Lais Schunk,  and Gregory Soyez, “A study of jet mass distributions with grooming,” JHEP 07, 132 (2017)arXiv:1704.02210 [hep-ph] .
  • Marzani et al. (2018) Simone Marzani, Lais Schunk,  and Gregory Soyez, “The jet mass distribution after Soft Drop,” Eur. Phys. J. C78, 96 (2018)arXiv:1712.05105 [hep-ph] .
  • Metodiev et al. (2017) Eric M. Metodiev, Benjamin Nachman,  and Jesse Thaler, “Classification without labels: Learning from mixed samples in high energy physics,” JHEP 10, 174 (2017)arXiv:1708.02949 [hep-ph] .
  • Cranmer et al. (2015) Kyle Cranmer, Juan Pavez,  and Gilles Louppe, “Approximating Likelihood Ratios with Calibrated Discriminative Classifiers,”  (2015), arXiv:1506.02169 [stat.AP] .
  • Blanchard et al. (2016) Gilles Blanchard, Marek Flaska, Gregory Handy, Sara Pozzi, Clayton Scott, et al., “Classification with asymmetric label noise: Consistency and maximal denoising,” Electronic Journal of Statistics 10, 2780–2824 (2016).
  • Dery et al. (2017) Lucio Mwinmaarong Dery, Benjamin Nachman, Francesco Rubbo,  and Ariel Schwartzman, “Weakly Supervised Classification in High Energy Physics,” JHEP 05, 145 (2017)arXiv:1702.00414 [hep-ph] .
  • Cohen et al. (2018)

    Timothy Cohen, Marat Freytsis,  and Bryan Ostdiek, “(Machine) Learning to Do More with Less,” 

    JHEP 02, 034 (2018)arXiv:1706.09451 [hep-ph] .
  • Komiske et al. (2018) Patrick T. Komiske, Eric M. Metodiev, Benjamin Nachman,  and Matthew D. Schwartz, “Learning to Classify from Impure Samples,”  (2018), arXiv:1801.10158 [hep-ph] .
  • Arora et al. (2012) Sanjeev Arora, Rong Ge,  and Ankur Moitra, “Learning topic models–going beyond svd,” in Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on (IEEE, 2012) pp. 1–10.
  • Katz-Samuels et al. (2017) Julian Katz-Samuels, Gilles Blanchard,  and Clayton Scott, “Decontamination of Mutual Contamination Models,”  (2017), arXiv:1710.01167 [stat.ML] .
  • Gallicchio and Schwartz (2011b) Jason Gallicchio and Matthew D. Schwartz, “Pure Samples of Quark and Gluon Jets at the LHC,” JHEP 10, 103 (2011b)arXiv:1104.1175 [hep-ph] .
  • Sjostrand et al. (2006) Torbjorn Sjostrand, Stephen Mrenna,  and Peter Z. Skands, “PYTHIA 6.4 Physics and Manual,” JHEP 05, 026 (2006)arXiv:hep-ph/0603175 [hep-ph] .
  • Sjöstrand et al. (2015) Torbjörn Sjöstrand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel, Christine O. Rasmussen,  and Peter Z. Skands, “An Introduction to PYTHIA 8.2,” Comput. Phys. Commun. 191, 159–177 (2015)arXiv:1410.3012 [hep-ph] .
  • Cacciari et al. (2008) Matteo Cacciari, Gavin P. Salam,  and Gregory Soyez, “The Anti-k(t) jet clustering algorithm,” JHEP 04, 063 (2008)arXiv:0802.1189 [hep-ph] .
  • Cacciari et al. (2012) Matteo Cacciari, Gavin P. Salam,  and Gregory Soyez, “FastJet User Manual,” Eur. Phys. J. C72, 1896 (2012)arXiv:1111.6097 [hep-ph] .
  • Berger et al. (2003) Carola F. Berger, Tibor Kucs,  and George F. Sterman, “Event shape / energy flow correlations,” Phys. Rev. D68, 014012 (2003)arXiv:hep-ph/0303051 [hep-ph] .
  • Almeida et al. (2009) Leandro G. Almeida, Seung J. Lee, Gilad Perez, George F. Sterman, Ilmo Sung,  and Joseph Virzi, “Substructure of high- Jets at the LHC,” Phys. Rev. D79, 074017 (2009)arXiv:0807.0234 [hep-ph] .
  • Ellis et al. (2010b) Stephen D. Ellis, Christopher K. Vermilion, Jonathan R. Walsh, Andrew Hornig,  and Christopher Lee, “Jet Shapes and Jet Algorithms in SCET,” JHEP 11, 101 (2010b)arXiv:1001.0014 [hep-ph] .
  • Aaboud et al. (2017b) Morad Aaboud et al. (ATLAS), “A measurement of the soft-drop jet mass in pp collisions at TeV with the ATLAS detector,”  (2017b), arXiv:1711.08341 [hep-ex] .
  • CMS (2017) Measurement of the differential jet production cross section with respect to jet mass and transverse momentum in dijet events from pp collisions at = 13 TeV, Tech. Rep. CMS-PAS-SMP-16-010 (CERN, Geneva, 2017).
  • Aaboud et al. (2018) Morad Aaboud et al. (ATLAS), “Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector,” JHEP 01, 126 (2018)arXiv:1711.03301 [hep-ex] .
  • Sirunyan et al. (2017) Albert M Sirunyan et al. (CMS), “Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at 13 TeV,”  (2017), arXiv:1712.02345 [hep-ex] .
  • Andersen et al. (2018) J. R. Andersen et al., “Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report,” in 10th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2017) Les Houches, France, June 5-23, 2017 (2018) arXiv:1803.07977 [hep-ph] .
  • Blei et al. (2003) David M Blei, Andrew Y Ng,  and Michael I Jordan, “Latent dirichlet allocation,” Journal of machine Learning research 3, 993–1022 (2003).
  • Lee and Seung (1999) Daniel D Lee and H Sebastian Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature 401, 788–791 (1999).
  • Donoho and Stodden (2004) David Donoho and Victoria Stodden, “When does non-negative matrix factorization give a correct decomposition into parts?” in Advances in neural information processing systems (2004) pp. 1141–1148.
  • Naik and Kumar (2011)

    Ganesh R Naik and Dinesh K Kumar, “An overview of independent component analysis and its applications,” Informatica 

    35 (2011).
  • Blanchard and Scott (2014) Gilles Blanchard and Clayton Scott, “Decontamination of Mutually Contaminated Models,” in Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, Vol. 33, edited by Samuel Kaski and Jukka Corander (PMLR, Reykjavik, Iceland, 2014) pp. 1–9.
  • Jain et al. (2016) Shantanu Jain, Martha White, Michael W Trosset,  and Predrag Radivojac, “Nonparametric semi-supervised learning of class proportions,”  (2016), arXiv:1601.01944 [stat.ML] .
  • Katz-Samuels and Scott (2016) Julian Katz-Samuels and Clayton Scott, “A mutual contamination analysis of mixed membership and partial label models,”  (2016), arXiv:1602.06235 [stat.ML] .
  • Comon and Jutten (2010) Pierre Comon and Christian Jutten, Handbook of Blind Source Separation: Independent component analysis and applications (Academic press, 2010).
  • Reju et al. (2009) Vaninirappuputhenpurayil Gopalan Reju, Soo Ngee Koh,  and Yann Soon, “An algorithm for mixing matrix estimation in instantaneous blind source separation,” Signal Processing 89, 1762–1773 (2009).
  • Sanderson and Scott (2014) Tyler Sanderson and Clayton Scott, “Class Proportion Estimation with Application to Multiclass Anomaly Rejection,” in Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, Vol. 33, edited by Samuel Kaski and Jukka Corander (PMLR, Reykjavik, Iceland, 2014) pp. 850–858.
  • Scott (2015) Clayton Scott, “A Rate of Convergence for Mixture Proportion Estimation, with Application to Learning from Noisy Labels,” in Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, Vol. 38, edited by Guy Lebanon and S. V. N. Vishwanathan (PMLR, San Diego, California, USA, 2015) pp. 838–846.
  • Ramaswamy et al. (2016) Harish Ramaswamy, Clayton Scott,  and Ambuj Tewari, “Mixture proportion estimation via kernel embeddings of distributions,” in Proceedings of The 33rd International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 48, edited by Maria Florina Balcan and Kilian Q. Weinberger (PMLR, New York, New York, USA, 2016) pp. 2052–2060.
  • Ding et al. (2015) Weicong Ding, Prakash Ishwar,  and Venkatesh Saligrama, “Necessary and sufficient conditions and a provably efficient algorithm for separable topic discovery,”  (2015), arXiv:1508.05565 [cs.LG] .
  • Ding (2015) Weicong Ding, Learning mixed membership models with a separable latent structure: theory, provably efficient algorithms, and applications, Ph.D. thesis, Boston University (2015).
  • Arora et al. (2013) Sanjeev Arora, Rong Ge, Yonatan Halpern, David Mimno, Ankur Moitra, David Sontag, Yichen Wu,  and Michael Zhu, “A practical algorithm for topic modeling with provable guarantees,” in Proceedings of the 30th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 28, edited by Sanjoy Dasgupta and David McAllester (PMLR, Atlanta, Georgia, USA, 2013) pp. 280–288.
  • Greene et al. (2014) Derek Greene, Derek O’Callaghan,  and Pádraig Cunningham, “How many topics? stability analysis for topic models,” in Joint European Conference on Machine Learning and Knowledge Discovery in Databases (Springer, 2014) pp. 498–513.
  • Wang et al. (2014) Biao Wang, Yang Liu, Zelong Liu, Maozhen Li,  and Man Qi, “Topic selection in latent dirichlet allocation,” in Fuzzy Systems and Knowledge Discovery (FSKD), 2014 11th International Conference on (IEEE, 2014) pp. 756–760.
  • Zhao et al. (2015)

    Weizhong Zhao, James J Chen, Roger Perkins, Zhichao Liu, Weigong Ge, Yijun Ding,  and Wen Zou, “A heuristic approach to determine an appropriate number of topics in topic modeling,” BMC bioinformatics 

    16, S8 (2015).