On the Theories Behind Hard Negative Sampling for Recommendation

02/07/2023
by   Wentao Shi, et al.
0

Negative sampling has been heavily used to train recommender models on large-scale data, wherein sampling hard examples usually not only accelerates the convergence but also improves the model accuracy. Nevertheless, the reasons for the effectiveness of Hard Negative Sampling (HNS) have not been revealed yet. In this work, we fill the research gap by conducting thorough theoretical analyses on HNS. Firstly, we prove that employing HNS on the Bayesian Personalized Ranking (BPR) learner is equivalent to optimizing One-way Partial AUC (OPAUC). Concretely, the BPR equipped with Dynamic Negative Sampling (DNS) is an exact estimator, while with softmax-based sampling is a soft estimator. Secondly, we prove that OPAUC has a stronger connection with Top-K evaluation metrics than AUC and verify it with simulation experiments. These analyses establish the theoretical foundation of HNS in optimizing Top-K recommendation performance for the first time. On these bases, we offer two insightful guidelines for effective usage of HNS: 1) the sampling hardness should be controllable, e.g., via pre-defined hyper-parameters, to adapt to different Top-K metrics and datasets; 2) the smaller the K we emphasize in Top-K evaluation metrics, the harder the negative samples we should draw. Extensive experiments on three real-world benchmarks verify the two guidelines.

READ FULL TEXT
research
12/04/2019

Evaluation Metrics for Item Recommendation under Sampling

The task of item recommendation requires ranking a large catalogue of it...
research
08/30/2020

A Differentiable Ranking Metric Using Relaxed Sorting Opeartion for Top-K Recommender Systems

A recommender system generates personalized recommendations for a user b...
research
11/25/2022

Soft BPR Loss for Dynamic Hard Negative Sampling in Recommender Systems

In recommender systems, leveraging Graph Neural Networks (GNNs) to formu...
research
11/28/2022

Towards Reliable Item Sampling for Recommendation Evaluation

Since Rendle and Krichene argued that commonly used sampling-based evalu...
research
06/02/2023

Reducing Popularity Bias in Recommender Systems through AUC-Optimal Negative Sampling

Popularity bias is a persistent issue associated with recommendation sys...
research
06/12/2023

Neighborhood-based Hard Negative Mining for Sequential Recommendation

Negative sampling plays a crucial role in training successful sequential...
research
06/22/2022

DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation

Recently, one critical issue looms large in the field of recommender sys...

Please sign up or login with your details

Forgot password? Click here to reset