On the Subspace of Image Gradient Orientations

05/16/2010
by   Georgios Tzimiropoulos, et al.
0

We introduce the notion of Principal Component Analysis (PCA) of image gradient orientations. As image data is typically noisy, but noise is substantially different from Gaussian, traditional PCA of pixel intensities very often fails to estimate reliably the low-dimensional subspace of a given data population. We show that replacing intensities with gradient orientations and the ℓ_2 norm with a cosine-based distance measure offers, to some extend, a remedy to this problem. Our scheme requires the eigen-decomposition of a covariance matrix and is as computationally efficient as standard ℓ_2 PCA. We demonstrate some of its favorable properties on robust subspace estimation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro