On the structure of matrices avoiding interval-minor patterns

03/23/2018
by   Vít Jelínek, et al.
0

We study the structure of 01-matrices avoiding a pattern P as an interval minor. We focus on critical P-avoiders, i.e., on the P-avoiding matrices in which changing a 0-entry to a 1-entry always creates a copy of P as an interval minor. Let Q be the 3x3 permutation matrix corresponding to the permutation 231. As our main result, we show that for every pattern P that has no rotated copy of Q as interval minor, there is a constant c(P) such that any row and any column in any critical P-avoiding matrix can be partitioned into at most c(P) intervals, each consisting entirely of 0-entries or entirely of 1-entries. In contrast, for any pattern P that contains a rotated copy of Q, we construct critical P-avoiding matrices of arbitrary size n× n having a row with Ω(n) alternating intervals of 0-entries and 1-entries.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset