On the State of the Art in Authorship Attribution and Authorship Verification

09/14/2022
by   Jacob Tyo, et al.
0

Despite decades of research on authorship attribution (AA) and authorship verification (AV), inconsistent dataset splits/filtering and mismatched evaluation methods make it difficult to assess the state of the art. In this paper, we present a survey of the fields, resolve points of confusion, introduce Valla that standardizes and benchmarks AA/AV datasets and metrics, provide a large-scale empirical evaluation, and provide apples-to-apples comparisons between existing methods. We evaluate eight promising methods on fifteen datasets (including distribution-shifted challenge sets) and introduce a new large-scale dataset based on texts archived by Project Gutenberg. Surprisingly, we find that a traditional Ngram-based model performs best on 5 (of 7) AA tasks, achieving an average macro-accuracy of 76.50% (compared to 66.71% for a BERT-based model). However, on the two AA datasets with the greatest number of words per author, as well as on the AV datasets, BERT-based models perform best. While AV methods are easily applied to AA, they are seldom included as baselines in AA papers. We show that through the application of hard-negative mining, AV methods are competitive alternatives to AA methods. Valla and all experiment code can be found here: https://github.com/JacobTyo/Valla

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset