On the Spectrum of Finite, Rooted Homogeneous Trees

03/17/2019
by   Daryl R. DeFord, et al.
0

In this paper we study the adjacency spectrum of families of finite rooted trees with regular branching properties. In particular, we show that in the case of constant branching, the eigenvalues are realized as the roots of a family of generalized Fibonacci polynomials and produce a limiting distribution for the eigenvalues as the tree depth goes to infinity. We indicate how these results can be extended to periodic branching patterns and also provide a generalization to higher order simplicial complexes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset