On the Sample Complexity of Graphical Model Selection for Non-Stationary Processes

01/17/2017
by   Nguyen Tran Quang, et al.
0

We formulate and analyze a graphical model selection method for inferring the conditional independence graph of a high-dimensional non-stationary Gaussian random process (time series) from a finite-length observation. The observed process samples are assumed uncorrelated over time but having different covariance matrices. We characterize the sample complexity of graphical model selection for such processes by analyzing a particular selection method, which is based on sparse neighborhood regression. Our results indicate, similar to the case of i.i.d. samples, accurate GMS is possible even in the high- dimensional regime if the underlying conditional independence graph is sufficiently sparse.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro