On The Round Complexity of Two-Party Quantum Computation

11/23/2020 ∙ by James Bartusek, et al. ∙ 0

We investigate the round complexity of maliciously-secure two-party quantum computation (2PQC) with setup, and obtain the following results: - A three-message protocol (two-message if only one party receives output) in the common random string (CRS) model assuming classical two-message oblivious transfer (OT) with post-quantum malicious security. This round complexity is optimal for the sequential communication setting. Under the additional assumption of reusable malicious designated-verifier non-interactive zero-knowledge (MDV-NIZK) arguments for NP, our techniques give an MDV-NIZK for QMA. Each of the assumptions mentioned above is known from the quantum hardness of learning with errors (QLWE). - A protocol with two simultaneous rounds of communication, in a quantum preprocessing model, assuming sub-exponential QLWE. In fact, we construct a three-round protocol in the CRS model with only two rounds of online communication, which implies the above result. Along the way, we develop a new delayed simulation technique that we call "simulation via teleportation," which may be useful in other settings. In addition, we perform a preliminary investigation into barriers and possible approaches for two-round 2PQC in the CRS model, including an impossibility result for a natural class of simulators, and a proof-of-concept construction from a strong form of quantum virtual black-box (VBB) obfuscation. Prior to our work, maliciously-secure 2PQC required round complexity linear in the size of the quantum circuit.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.