On the relation between structured d-DNNFs and SDDs

12/02/2019
by   Beate Bollig, et al.
0

Structured d-DNNFs and SDDs are restricted negation normal form circuits used in knowledge compilation as target languages into which propositional theories are compiled. Structuredness is imposed by so-called vtrees. By definition SDDs are restricted structured d-DNNFs. Beame and Liew (2015) as well as Bova and Szeider (2017) mentioned the question whether structured d-DNNFs are really more general than SDDs w.r.t. polynomial-size representations (w.r.t. the number of Boolean variables the represented functions are defined on.) The main result in the paper is the proof that a function can be represented by SDDs of polynomial size if the function and its complement have polynomial-size structured d-DNNFs that respect the same vtree.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro