On the Price of Independence for Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal
Let vc(G), fvs(G) and oct(G), respectively, denote the size of a minimum vertex cover, minimum feedback vertex set and minimum odd cycle transversal in a graph G. One can ask, when looking for these sets in a graph, how much bigger might they be if we require that they are independent; that is, what is the price of independence? If G has a vertex cover, feedback vertex set or odd cycle transversal that is an independent set, then we let ivc(G), ifvs(G) or ioct(G), respectively, denote the minimum size of such a set. Similar to a recent study on the price of connectivity (Hartinger et al. EuJC 2016), we investigate for which graphs H the values of ivc(G), ifvs(G) and ioct(G) are bounded in terms of vc(G), fvs(G) and oct(G), respectively, when the graph G belongs to the class of H-free graphs. We find complete classifications for vertex cover and feedback vertex set and an almost complete classification for odd cycle transversal (subject to three non-equivalent open cases). We also investigate for which graphs H the values of ivc(G), ifvs(G) and ioct(G) are equal to vc(G), fvs(G) and oct(G), respectively, when the graph G belongs to the class of H-free graphs. We find a complete classification for vertex cover and almost complete classifications for feedback vertex set (subject to one open case) and odd cycle transversal (subject to three open cases).
READ FULL TEXT