On the Power-Law Spectrum in Deep Learning: A Bridge to Protein Science

01/31/2022
by   Zeke Xie, et al.
6

It is well-known that the Hessian matters to optimization, generalization, and even robustness of deep learning. Recent works empirically discovered that the Hessian spectrum in deep learning has a two-component structure that consists of a small number of large eigenvalues and a large number of nearly-zero eigenvalues. However, the theoretical mechanism behind the Hessian spectrum is still absent or under-explored. We are the first to theoretically and empirically demonstrate that the Hessian spectrums of well-trained deep neural networks exhibit simple power-law distributions. Our work further reveals how the power-law spectrum essentially matters to deep learning: (1) it leads to low-dimensional and robust learning space, and (2) it implicitly penalizes the variational free energy, which results in low-complexity solutions. We further used the power-law spectral framework as a powerful tool to demonstrate multiple novel behaviors of deep learning. Interestingly, the power-law spectrum is also known to be important in protein, which indicates a novel bridge between deep learning and protein science.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro