On the pathwidth of hyperbolic 3-manifolds

05/24/2021 ∙ by Kristóf Huszár, et al. ∙ 0

According to Mostow's celebrated rigidity theorem, the geometry of closed hyperbolic 3-manifolds is already determined by their topology. In particular, the volume of such manifolds is a topological invariant and, as such, has been investigated for half a century. Motivated by the algorithmic study of 3-manifolds, Maria and Purcell have recently shown that every closed hyperbolic 3-manifold M with volume vol(M) admits a triangulation with dual graph of treewidth at most C vol(M), for some universal constant C. Here we improve on this result by showing that the volume provides a linear upper bound even on the pathwidth of the dual graph of some triangulation, which can potentially be much larger than the treewidth. Our proof relies on a synthesis of tools from 3-manifold theory: generalized Heegaard splittings, amalgamations, and the thick-thin decomposition of hyperbolic 3-manifolds. We provide an illustrated exposition of this toolbox and also discuss the algorithmic consequences of the result.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.