On the Need for Multi-Level ADS Scenarios

09/11/2021 ∙ by Stefan Klikovits, et al. ∙ 0

Currently, most existing approaches for the design of Automated Driving System (ADS) scenarios focus on the description at one particular abstraction level typically the most detailed one. This practice often removes information at higher levels, such that this data has to be re-synthesized if needed. As the abstraction granularity should be adapted to the task at hand, however, engineers currently have the choice between re-calculating the needed data or operating on the wrong level of abstraction. For instance, the search in a scenario database for a driving scenario with a map of a given road-shape should abstract over the lane markings, adjacent vegetation, or weather situation. Often though, the general road shape has to be synthesized (e.g. interpolated) from the precise GPS information of road boundaries. This paper outlines our vision for multi-level ADS scenario models that facilitate scenario search, generation, and design. Our concept is based on the common modelling philosophy to interact with scenarios at the most appropriate abstraction level. We identify different abstraction levels of ADS scenarios and suggest a template abstraction hierarchy. Our vision enables seamless traversal to such a most suitable granularity level for any given scenario, search and modelling task. We envision that this approach to ADS scenario modelling will have a lasting impact on the way we store, search, design, and generate ADS scenarios, allowing for a more strategic verification of autonomous vehicles in the long run.



There are no comments yet.


page 1

page 3

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.