On the nature of the boundary resonance error in numerical homogenization and its reduction

08/15/2023
by   Sean P. Carney, et al.
0

Numerical homogenization of multiscale equations typically requires taking an average of the solution to a microscale problem. Both the boundary conditions and domain size of the microscale problem play an important role in the accuracy of the homogenization procedure. In particular, imposing naive boundary conditions leads to a 𝒪(ϵ/η) error in the computation, where ϵ is the characteristic size of the microscopic fluctuations in the heterogeneous media, and η is the size of the microscopic domain. This so-called boundary, or “cell resonance" error can dominate discretization error and pollute the entire homogenization scheme. There exist several techniques in the literature to reduce the error. Most strategies involve modifying the form of the microscale cell problem. Below we present an alternative procedure based on the observation that the resonance error itself is an oscillatory function of domain size η. After rigorously characterizing the oscillatory behavior for one dimensional and quasi-one dimensional microscale domains, we present a novel strategy to reduce the resonance error. Rather than modifying the form of the cell problem, the original problem is solved for a sequence of domain sizes, and the results are averaged against kernels satisfying certain moment conditions and regularity properties. Numerical examples in one and two dimensions illustrate the utility of the approach.

READ FULL TEXT

page 17

page 18

research
01/15/2020

A parabolic local problem with exponential decay of the resonance error for numerical homogenization

This paper aims at an accurate and efficient computation of effective qu...
research
01/17/2020

An elliptic local problem with exponential decay of the resonance error for numerical homogenization

Numerical multiscale methods usually rely on some coupling between a mac...
research
10/21/2021

DeepBND: a Machine Learning approach to enhance Multiscale Solid Mechanics

Effective properties of materials with random heterogeneous structures a...
research
09/11/2019

Discrete transparent boundary conditions for the two-dimensional leap-frog scheme

We develop a general strategy in order to implement (approximate) discre...
research
10/11/2022

Higher Order Far-Field Boundary Conditions for Crystalline Defects

Lattice defects in crystalline materials create long-range elastic field...
research
03/15/2022

Locally refined quad meshing for linear elasticity problems based on convolutional neural networks

In this paper we propose a method to generate suitably refined finite el...
research
03/16/2021

Computational Homogenization of Concrete in the Cyber Size-Resolution-Discretization (SRD) Parameter Space

Micro- and mesostructures of multiphase materials obtained from tomograp...

Please sign up or login with your details

Forgot password? Click here to reset