On the minmax regret for statistical manifolds: the role of curvature

07/06/2020
by   Bruno Mera, et al.
0

Model complexity plays an essential role in its selection, namely, by choosing a model that fits the data and is also succinct. Two-part codes and the minimum description length have been successful in delivering procedures to single out the best models, avoiding overfitting. In this work, we pursue this approach and complement it by performing further assumptions in the parameter space. Concretely, we assume that the parameter space is a smooth manifold, and by using tools of Riemannian geometry, we derive a sharper expression than the standard one given by the stochastic complexity, where the scalar curvature of the Fisher information metric plays a dominant role. Furthermore, we derive the minmax regret for general statistical manifolds and apply our results to derive optimal dimensional reduction in the context of principal component analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset