On the Minimal Overcompleteness Allowing Universal Sparse Representation

04/13/2018
by   Rotem Mulayoff, et al.
0

Sparse representation over redundant dictionaries constitutes a good model for many classes of signals (e.g., patches of natural images, segments of speech signals, etc.). However, despite its popularity, very little is known about the representation capacity of this model. In this paper, we study how redundant a dictionary must be so as to allow any vector to admit a sparse approximation with a prescribed sparsity and a prescribed level of accuracy. We address this problem both in a worst-case setting and in an average-case one. For each scenario we derive lower and upper bounds on the minimal required overcompleteness. Our bounds have simple closed-form expressions that allow to easily deduce the asymptotic behavior in large dimensions. In particular, we find that the required overcompleteness grows exponentially with the sparsity level and polynomially with the allowed representation error. This implies that universal sparse representation is practical only at moderate sparsity levels, but can be achieved at relatively high accuracy. As a side effect of our analysis, we obtain a tight lower bound on the regularized incomplete beta function, which may be interesting in its own right. We illustrate the validity of our results through numerical simulations, which support our findings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset