On the Metric and Computation of PAC Codes

12/10/2020
by   Mohsen Moradi, et al.
0

In this paper, we present an optimal metric function on average, which leads to a significantly low decoding computation while maintaining the superiority of the polarization-adjusted convolutional (PAC) codes' error-correction performance. With our proposed metric function, the PAC codes' decoding computation is comparable to the conventional convolutional codes (CC) sequential decoding. Moreover, simulation results show an improvement in the low-rate PAC codes' error-correction performance when using our proposed metric function. We prove that choosing the polarized cutoff rate as the metric function's bias value reduces the probability of the sequential decoder advancing in the wrong path exponentially with respect to the wrong path depth. We also prove that the upper bound of the PAC codes' computation has a Pareto distribution; our simulation results also verify this. Furthermore, we present a scaling-bias procedure and a method of choosing threshold spacing for the search-limited sequential decoding that substantially improves the decoder's average computation. Our results show that for some codes with a length of 128, the search-limited PAC codes can achieve an error-correction performance close to the error-correction performance of the polar codes under successive cancellation list decoding with a list size of 64 and CRC length of 11 with a considerably lower computation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset