On the location of chromatic zeros of series-parallel graphs

04/21/2022
by   Ferenc Bencs, et al.
0

In this paper we consider the zeros of the chromatic polynomial of series-parallel graphs. Complementing a result of Sokal, showing density outside the disk {z∈ℂ| |z-1| ≤ 1}, we show density of these zeros in the half plane (q)>3/2 and we show there exists an open region U containing the interval (0,32/27) such that U∖{1} does not contain zeros of the chromatic polynomial of series-parallel graphs. We also disprove a conjecture of Sokal by showing that for each large enough integer Δ there exists a series-parallel graph for which all vertices but one have degree at most Δ and whose chromatic polynomial has a zero with real part exceeding Δ.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro