On the Generalization Properties of Minimum-norm Solutions for Over-parameterized Neural Network Models

12/15/2019 ∙ by Weinan E, et al. ∙ 10

We study the generalization properties of minimum-norm solutions for three over-parametrized machine learning models including the random feature model, the two-layer neural network model and the residual network model. We proved that for all three models, the generalization error for the minimum-norm solution is comparable to the Monte Carlo rate, up to some logarithmic terms, as long as the models are sufficiently over-parametrized.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.