On the Estimation of Coherence

09/04/2010
by   Mehryar Mohri, et al.
0

Low-rank matrix approximations are often used to help scale standard machine learning algorithms to large-scale problems. Recently, matrix coherence has been used to characterize the ability to extract global information from a subset of matrix entries in the context of these low-rank approximations and other sampling-based algorithms, e.g., matrix com- pletion, robust PCA. Since coherence is defined in terms of the singular vectors of a matrix and is expensive to compute, the practical significance of these results largely hinges on the following question: Can we efficiently and accurately estimate the coherence of a matrix? In this paper we address this question. We propose a novel algorithm for estimating coherence from a small number of columns, formally analyze its behavior, and derive a new coherence-based matrix approximation bound based on this analysis. We then present extensive experimental results on synthetic and real datasets that corroborate our worst-case theoretical analysis, yet provide strong support for the use of our proposed algorithm whenever low-rank approximation is being considered. Our algorithm efficiently and accurately estimates matrix coherence across a wide range of datasets, and these coherence estimates are excellent predictors of the effectiveness of sampling-based matrix approximation on a case-by-case basis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro