On the dependence between a Wiener process and its running maxima and running minima processes

09/05/2021
by   Karol Dąbrowski, et al.
0

We study a triple of stochastic processes: a Wiener process W_t, t ≥ 0, its running maxima process M_t=sup{W_s: s ∈ [0,t]} and its running minima process m_t=inf{W_s: s ∈ [0,t]}. We derive the analytical formulas for the joint distribution function and the corresponding copula. As an application we draw out an analytical formula for pricing double barrier options.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset