# On the cut dimension of a graph

Let G = (V,w) be a weighted undirected graph with m edges. The cut dimension of G is the dimension of the span of the characteristic vectors of the minimum cuts of G, viewed as vectors in {0,1}^m. For every n ≥ 2 we show that the cut dimension of an n-vertex graph is at most 2n-3, and construct graphs realizing this bound. The cut dimension was recently defined by Graur et al. <cit.>, who show that the maximum cut dimension of an n-vertex graph is a lower bound on the number of cut queries needed by a deterministic algorithm to solve the minimum cut problem on n-vertex graphs. For every n≥ 2, Graur et al.exhibit a graph on n vertices with cut dimension at least 3n/2 -2, giving the first lower bound larger than n on the deterministic cut query complexity of computing mincut. We observe that the cut dimension is even a lower bound on the number of linear queries needed by a deterministic algorithm to solve mincut, where a linear query can ask any vector x ∈ℝ^n2 and receives the answer w^T x. Our results thus show a lower bound of 2n-3 on the number of linear queries needed by a deterministic algorithm to solve minimum cut on n-vertex graphs, and imply that one cannot show a lower bound larger than this via the cut dimension. We further introduce a generalization of the cut dimension which we call the ℓ_1-approximate cut dimension. The ℓ_1-approximate cut dimension is also a lower bound on the number of linear queries needed by a deterministic algorithm to compute minimum cut. It is always at least as large as the cut dimension, and we construct an infinite family of graphs on n=3k+1 vertices with ℓ_1-approximate cut dimension 2n-2, showing that it can be strictly larger than the cut dimension.

Comments

There are no comments yet.

## Authors

• 10 publications
• 12 publications
• 11 publications
• 19 publications
• ### Query Complexity of Global Minimum Cut

In this work, we resolve the query complexity of global minimum cut prob...
07/17/2020 ∙ by Arijit Bishnu, et al. ∙ 0

read it

• ### Sparsification of Balanced Directed Graphs

Sparsification, where the cut values of an input graph are approximately...
06/02/2020 ∙ by Yu Cheng, et al. ∙ 0

read it

• ### The Fine-Grained Complexity of Computing the Tutte Polynomial of a Linear Matroid

We show that computing the Tutte polynomial of a linear matroid of dimen...
03/07/2020 ∙ by Andreas Björklund, et al. ∙ 0

read it

• ### The Structure of Minimum Vertex Cuts

In this paper we continue a long line of work on representing the cut st...
02/12/2021 ∙ by Seth Pettie, et al. ∙ 0

read it

• ### Cut polytope has vertices on a line

The cut polytope CUT(n) is the convex hull of the cut vectors in a comp...
12/07/2018 ∙ by Nevena Maric, et al. ∙ 0

read it

• ### A lower bound for splines on tetrahedral vertex stars

A tetrahedral complex all of whose tetrahedra meet at a common vertex is...
05/26/2020 ∙ by Michael DiPasquale, et al. ∙ 0

read it

• ### Sequential metric dimension for random graphs

In the localization game, the goal is to find a fixed but unknown target...
10/22/2019 ∙ by Gergely Odor, et al. ∙ 0

read it

##### This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.