On the Connection between Differential Privacy and Adversarial Robustness in Machine Learning

02/09/2018
by   Mathias Lecuyer, et al.
0

Adversarial examples in machine learning has been a topic of intense research interest, with attacks and defenses being developed in a tight back-and-forth. Most past defenses are best-effort, heuristic approaches that have all been shown to be vulnerable to sophisticated attacks. More recently, rigorous defenses that provide formal guarantees have emerged, but are hard to scale or generalize. A rigorous and general foundation for designing defenses is required to get us off this arms race trajectory. We propose leveraging differential privacy (DP) as a formal building block for robustness against adversarial examples. We observe that the semantic of DP is closely aligned with the formal definition of robustness to adversarial examples. We propose PixelDP, a strategy for learning robust deep neural networks based on formal DP guarantees. PixelDP networks give theoretical guarantees for a subset of their predictions regarding the robustness against adversarial perturbations of bounded size. Our evaluation with MNIST, CIFAR-10, and CIFAR-100 shows that PixelDP networks achieve accuracy under attack on par with the best-performing defense to date, but additionally certify robustness against meaningful-size 1-norm and 2-norm attacks for 40-60 points to DP as a rigorous, broadly applicable, and mechanism-rich foundation for robust machine learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro