On the Conditional Distribution of a Multivariate Normal given a Transformation - the Linear Case

10/24/2017
by   Rajeshwari Majumdar, et al.
0

We show that the orthogonal projection operator onto the range of the adjoint of a linear operator T can be represented as UT, where U is an invertible linear operator. Using this representation we obtain a decomposition of a Normal random vector Y as the sum of a linear transformation of Y that is independent of TY and an affine transformation of TY. We then use this decomposition to prove that the conditional distribution of a Normal random vector Y given a linear transformation TY is again a multivariate Normal distribution. This result is equivalent to the well-known result that given a k-dimensional component of a n-dimensional Normal random vector, where k<n, the conditional distribution of the remaining (n-k)-dimensional component is a (n-k)-dimensional multivariate Normal distribution, and sets the stage for approximating the conditional distribution of Y given g(Y), where g is a continuously differentiable vector field.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro