On the Complexity of Nucleolus Computation for Bipartite b-Matching Games

05/15/2021 ∙ by Jochen Koenemann, et al. ∙ 0

We explore the complexity of nucleolus computation in b-matching games on bipartite graphs. We show that computing the nucleolus of a simple b-matching game is NP-hard even on bipartite graphs of maximum degree 7. We complement this with partial positive results in the special case where b values are bounded by 2. In particular, we describe an efficient algorithm when a constant number of vertices satisfy b(v) = 2 as well as an efficient algorithm for computing the non-simple b-matching nucleolus when b = 2.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.