On the Complexity of Constrained Determinantal Point Processes
Determinantal Point Processes (DPPs) are probabilistic models that arise in quantum physics and random matrix theory and have recently found numerous applications in computer science. DPPs define distributions over subsets of a given ground set, they exhibit interesting properties such as negative correlation, and, unlike other models, have efficient algorithms for sampling. When applied to kernel methods in machine learning, DPPs favor subsets of the given data with more diverse features. However, many real-world applications require efficient algorithms to sample from DPPs with additional constraints on the subset, e.g., partition or matroid constraints that are important to ensure priors, resource or fairness constraints on the sampled subset. Whether one can efficiently sample from DPPs in such constrained settings is an important problem that was first raised in a survey of DPPs by KuleszaTaskar12 and studied in some recent works in the machine learning literature. The main contribution of our paper is the first resolution of the complexity of sampling from DPPs with constraints. We give exact efficient algorithms for sampling from constrained DPPs when their description is in unary. Furthermore, we prove that when the constraints are specified in binary, this problem is #P-hard via a reduction from the problem of computing mixed discriminants implying that it may be unlikely that there is an FPRAS. Our results benefit from viewing the constrained sampling problem via the lens of polynomials. Consequently, we obtain a few algorithms of independent interest: 1) to count over the base polytope of regular matroids when there are additional (succinct) budget constraints and, 2) to evaluate and compute the mixed characteristic polynomials, that played a central role in the resolution of the Kadison-Singer problem, for certain special cases.
READ FULL TEXT