On the Asymptotics of Graph Cut Objectives for Experimental Designs of Network A/B Testing

09/15/2023
by   Qiong Zhang, et al.
0

A/B testing is an effective way to assess the potential impacts of two treatments. For A/B tests conducted by IT companies, the test users of A/B testing are often connected and form a social network. The responses of A/B testing can be related to the network connection of test users. This paper discusses the relationship between the design criteria of network A/B testing and graph cut objectives. We develop asymptotic distributions of graph cut objectives to enable rerandomization algorithms for the design of network A/B testing under two scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro