On the 2-colored crossing number

08/18/2019
by   Oswin Aichholzer, et al.
0

Let D be a straight-line drawing of a graph. The rectilinear 2-colored crossing number of D is the minimum number of crossings between edges of the same color, taken over all possible 2-colorings of the edges of D. First, we show lower and upper bounds on the rectilinear 2-colored crossing number for the complete graph K_n. To obtain this result, we prove that asymptotic bounds can be derived from optimal and near-optimal instances with few vertices. We obtain such instances using a combination of heuristics and integer programming. Second, for any fixed drawing of K_n, we improve the bound on the ratio between its rectilinear 2-colored crossing number and its rectilinear crossing number.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro