On Testing Whether an Embedded Bayesian Network Represents a Probability Model

02/27/2013 ∙ by Dan Geiger, et al. ∙ 0

Testing the validity of probabilistic models containing unmeasured (hidden) variables is shown to be a hard task. We show that the task of testing whether models are structurally incompatible with the data at hand, requires an exponential number of independence evaluations, each of the form: "X is conditionally independent of Y, given Z." In contrast, a linear number of such evaluations is required to test a standard Bayesian network (one per vertex). On the positive side, we show that if a network with hidden variables G has a tree skeleton, checking whether G represents a given probability model P requires the polynomial number of such independence evaluations. Moreover, we provide an algorithm that efficiently constructs a tree-structured Bayesian network (with hidden variables) that represents P if such a network exists, and further recognizes when such a network does not exist.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.