On Some Combinatorial Problems in Cographs

08/28/2018
by   Kona Harshita, et al.
0

The family of graphs that can be constructed from isolated vertices by disjoint union and graph join operations are called cographs. These graphs can be represented in a tree-like representation termed parse tree or cotree. In this paper, we study some popular combinatorial problems restricted to cographs. We first present a structural characterization of minimal vertex separators in cographs. Further, we show that listing all minimal vertex separators and the complexity of some constrained vertex separators are polynomial-time solvable in cographs. We propose polynomial-time algorithms for connectivity augmentation problems and its variants in cographs, preserving the cograph property. Finally, using the dynamic programming paradigm, we present a generic framework to solve classical optimization problems such as the longest path, the Steiner path and the minimum leaf spanning tree problems restricted to cographs, our framework yields polynomial-time algorithms for all three problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset