On segmentation of pectoralis muscle in digital mammograms by means of deep learning

08/29/2020
by   Hossein Soleimani, et al.
19

Computer-aided diagnosis (CAD) has long become an integral part of radiological management of breast disease, facilitating a number of important clinical applications, including quantitative assessment of breast density and early detection of malignancies based on X-ray mammography. Common to such applications is the need to automatically discriminate between breast tissue and adjacent anatomy, with the latter being predominantly represented by pectoralis major (or pectoral muscle). Especially in the case of mammograms acquired in the mediolateral oblique (MLO) view, the muscle is easily confusable with some elements of breast anatomy due to their morphological and photometric similarity. As a result, the problem of automatic detection and segmentation of pectoral muscle in MLO mammograms remains a challenging task, innovative approaches to which are still required and constantly searched for. To address this problem, the present paper introduces a two-step segmentation strategy based on a combined use of data-driven prediction (deep learning) and graph-based image processing. In particular, the proposed method employs a convolutional neural network (CNN) which is designed to predict the location of breast-pectoral boundary at different levels of spatial resolution. Subsequently, the predictions are used by the second stage of the algorithm, in which the desired boundary is recovered as a solution to the shortest path problem on a specially designed graph. The proposed algorithm has been tested on three different datasets (i.e., MIAS, CBIS-DDSm and InBreast) using a range of quantitative metrics. The results of comparative analysis show considerable improvement over state-of-the-art, while offering the possibility of model-free and fully automatic processing.

READ FULL TEXT

page 2

page 3

page 5

page 7

page 9

research
02/03/2020

Stan: Small tumor-aware network for breast ultrasound image segmentation

Breast tumor segmentation provides accurate tumor boundary, and serves a...
research
07/29/2013

Automatic Mammogram image Breast Region Extraction and Removal of Pectoral Muscle

Currently Mammography is a most effective imaging modality used by radio...
research
10/01/2013

Filtering for More Accurate Dense Tissue Segmentation in Digitized Mammograms

Breast tissue segmentation into dense and fat tissue is important for de...
research
08/07/2020

Dual Convolutional Neural Networks for Breast Mass Segmentation and Diagnosis in Mammography

Deep convolutional neural networks (CNNs) have emerged as a new paradigm...
research
01/09/2018

A Benchmark for Breast Ultrasound Image Segmentation (BUSIS)

Breast ultrasound (BUS) image segmentation is challenging and critical f...
research
07/20/2020

Optimization methods for very accurate Digital Breast Tomosynthesis image reconstruction

Digital Breast Tomosynthesis is an X-ray imaging technique that allows a...
research
08/14/2018

Deep Learning Framework for Digital Breast Tomosynthesis Reconstruction

Digital breast tomosynthesis is rapidly replacing digital mammography as...

Please sign up or login with your details

Forgot password? Click here to reset