On Robustness in Nonconvex Optimization with Application to Defense Planning

08/20/2022
by   Johannes O. Royset, et al.
0

In the context of structured nonconvex optimization, we estimate the increase in minimum value for a decision that is robust to parameter perturbations as compared to the value of a nominal problem. The estimates rely on detailed expressions for subgradients and local Lipschitz moduli of min-value functions in nonconvex robust optimization and require only the solution of the nominal problem. The theoretical results are illustrated by examples from military operations research involving mixed-integer optimization models. Across 54 cases examined, the median error in estimating the increase in minimum value is 12 moduli may accurately inform analysts about the possibility of obtaining cost-effective, parameter-robust decisions in nonconvex optimization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro