On Relaxed Filtered Krylov Subspace Method for Non-Symmetric Eigenvalue Problems

11/15/2020
by   Cun-Qiang Miao, et al.
0

In this paper, by introducing a class of relaxed filtered Krylov subspaces, we propose the relaxed filtered Krylov subspace method for computing the eigenvalues with the largest real parts and the corresponding eigenvectors of non-symmetric matrices. As by-products, the generalizations of the filtered Krylov subspace method and the Chebyshev-Davidson method for solving non-symmetric eigenvalue problems are also presented. We give the convergence analysis of the complex Chebyshev polynomial, which plays a significant role in the polynomial acceleration technique. In addition, numerical experiments are carried out to show the robustness of the relaxed filtered Krylov subspace method and its great superiority over some state-of-the art iteration methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro