DeepAI AI Chat
Log In Sign Up

On Redundant Topological Constraints

by   Sanjiang Li, et al.
University of Technology Sydney
The University of Melbourne
Baidu, Inc.

The Region Connection Calculus (RCC) is a well-known calculus for representing part-whole and topological relations. It plays an important role in qualitative spatial reasoning, geographical information science, and ontology. The computational complexity of reasoning with RCC5 and RCC8 (two fragments of RCC) as well as other qualitative spatial/temporal calculi has been investigated in depth in the literature. Most of these works focus on the consistency of qualitative constraint networks. In this paper, we consider the important problem of redundant qualitative constraints. For a set Γ of qualitative constraints, we say a constraint (x R y) in Γ is redundant if it is entailed by the rest of Γ. A prime subnetwork of Γ is a subset of Γ which contains no redundant constraints and has the same solution set as Γ. It is natural to ask how to compute such a prime subnetwork, and when it is unique. In this paper, we show that this problem is in general intractable, but becomes tractable if Γ is over a tractable subalgebra S of a qualitative calculus. Furthermore, if S is a subalgebra of RCC5 or RCC8 in which weak composition distributes over nonempty intersections, then Γ has a unique prime subnetwork, which can be obtained in cubic time by removing all redundant constraints simultaneously from Γ. As a byproduct, we show that any path-consistent network over such a distributive subalgebra is weakly globally consistent and minimal. A thorough empirical analysis of the prime subnetwork upon real geographical data sets demonstrates the approach is able to identify significantly more redundant constraints than previously proposed algorithms, especially in constraint networks with larger proportions of partial overlap relations.


On Distributive Subalgebras of Qualitative Spatial and Temporal Calculi

Qualitative calculi play a central role in representing and reasoning ab...

Reasoning about Cardinal Directions between Extended Objects

Direction relations between extended spatial objects are important commo...

Spatial database implementation of fuzzy region connection calculus for analysing the relationship of diseases

Analyzing huge amounts of spatial data plays an important role in many e...

Reasoning about Cardinal Directions between Extended Objects: The Hardness Result

The cardinal direction calculus (CDC) proposed by Goyal and Egenhofer is...

Reasoning with Topological and Directional Spatial Information

Current research on qualitative spatial representation and reasoning mai...

Tractable Fragments of Temporal Sequences of Topological Information

In this paper, we focus on qualitative temporal sequences of topological...

Exact Learning of Qualitative Constraint Networks from Membership Queries

A Qualitative Constraint Network (QCN) is a constraint graph for represe...